Package: HDCI 1.0-2

HDCI: High Dimensional Confidence Interval Based on Lasso and Bootstrap

Fits regression models on high dimensional data to estimate coefficients and use bootstrap method to obtain confidence intervals. Choices for regression models are Lasso, Lasso+OLS, Lasso partial ridge, Lasso+OLS partial ridge.

Authors:Hanzhong Liu, Xin Xu, Jingyi Jessica Li

HDCI_1.0-2.tar.gz
HDCI_1.0-2.zip(r-4.5)HDCI_1.0-2.zip(r-4.4)HDCI_1.0-2.zip(r-4.3)
HDCI_1.0-2.tgz(r-4.4-any)HDCI_1.0-2.tgz(r-4.3-any)
HDCI_1.0-2.tar.gz(r-4.5-noble)HDCI_1.0-2.tar.gz(r-4.4-noble)
HDCI_1.0-2.tgz(r-4.4-emscripten)HDCI_1.0-2.tgz(r-4.3-emscripten)
HDCI.pdf |HDCI.html
HDCI/json (API)

# Install 'HDCI' in R:
install.packages('HDCI', repos = c('https://xinxuyale.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/xinxuyale/hdci/issues

On CRAN:

3.30 score 2 packages 33 scripts 199 downloads 1 mentions 12 exports 13 dependencies

Last updated 6 years agofrom:8b93bf98f1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winOKNov 01 2024
R-4.5-linuxOKNov 01 2024
R-4.4-winOKNov 01 2024
R-4.4-macOKNov 01 2024
R-4.3-winOKNov 01 2024
R-4.3-macOKNov 01 2024

Exports:bootLassobootLassoOLSbootLOPRbootLPRciescv.glmnetLassoLassoOLSLPRmlsmypredictPartRidge

Dependencies:codetoolsdoParallelforeachglmnetiteratorslatticeMatrixmvtnormRcppRcppEigenshapeslamsurvival